If you are reading this, you are probably aware that I’m an astrophysicist.  I’m a research scientist with a bunch of academic publications to my name, including my (little-read) PhD thesis from 2006.  I’m also lucky enough to have landed an academic job where I can do research and teach.

When I started out on this career path, waaaaaay back at primary school (yes, really, I was one of those annoying kids who knew early on what they wanted to do) I was warned by many people that it would be difficult, and that very few people succeeded.  Someone gave me a leaflet published by the RAS (I think) that ran through the numbers and showed how few of those aspiring to be astronomers actually got a job in the field.  I’m very lucky.

But from a fairly young age, I also realised I was good at teaching stuff to other people.  Whether that was lighting fires on Guide camp,  teaching my older relatives how to use a computer, or any number of other things, people often told me I would make a good teacher.  It was a long time before I believed that they were right.

But.

As a PhD student, you are encouraged to do a  bit of teaching, as a means of income if nothing else, but not given much training in how to do it, never mind how to do it well.  At least, I wasn’t, they just let you get on with it.  Many students emulated the behaviour of their professors because if that’s all you have seen of teaching in HE, it’s what you think good teaching is.  Even if it isn’t.

As an aspiring academic I could see that, in UK higher education at least, there was an increasing trend for new academics to do training in how to teach, often in the form of a PGCertHE.  As a postdoc, I was enthusiastic about this – it surprised me to discover that there were no formal requirements for teacher training in universities.  I spent two years teaching in the lab.  I wrote and delivered an MSc-level course in radiation processes in astrophysics.  I supervised internship and research students.  But when I tried to sign up for the PGCert at my institution, I was told that I couldn’t because I wasn’t an academic and therefore didn’t have any teaching responsibilities.

Hmm.  The qualification was increasingly becoming a requirement on academic job descriptions.  But I wasn’t allowed to do the qualification because I wasn’t already (formally) teaching.  I wasn’t allowed to (formally) teach because I was being paid purely to do research.  Stalemate.

Then I moved institutions to a job with actual teaching responsibilities.  Great, I thought, I’ll finally get to do some teacher training!  But no, I was told I couldn’t enrol on the PGCert because I didn’t have enough experience(!) and had to complete a different programme first.  That programme ran on a Thursday afternoon.  When I was teaching.  Not surprisingly, I failed the assessment because I hadn’t been able to get to any of the training sessions.

Why am I telling you all this?  Well, in February I finally started studying for a PGCert.  Ten years after I first tried.  In two months I will (hopefully!) have completed my final assignment and passed.  Thanks to a supportive boss, I was able to choose a PGCert that was particularly relevant to what and how I teach, and have my fees paid for through the staff development fund.  But it really bugs me that it’s been so hard to get to this point.

I’ve come across a large number of academics who consider teaching to be trivial, or an inconvenience, or something they just have to do to keep their job.  Maybe that is peculiar to physics, but I doubt it somehow.

Some of us are really passionate about both teaching and research.  It seems to be difficult to do both, and give them both the time and attention they require.  Promotion criteria seem to work against use here, too.  You can follow the traditional “academic” pathway where your research is highly valued, or you can follow the “teaching” pathway where you are expected to not put any effort into advancing your field any more.

Why should we choose?  Why can’t we do both?  Teaching informed and inspired by research is more satisfying for students, and for lecturers.  And research informed by teaching can provide inspiration and potentially take you in new directions.

As Fabrice Hénard and Deborah Roseveare said in one of the recommendations set out in their report for the OECD’s Institutional Management in Higher Education, Fostering Quality Teaching in Higher Education: Policies and Practices, universities should:

“Cross-fertilise professional development for teaching and research so as to increase mutual learning. Avoid distinctive professional development paths.”

I couldn’t agree more.

As Amy J. Ko discusses over here, research and teaching are both more powerful when they are woven together.  If the future of higher education is to stay relevant to the world around us and give our students the skills and tools to fix the Big Problems like climate change, we need to be teaching them how to find reliable information, think critically, synthesise information and ideas and discover creative ways to solve problems.

I don’t know about you, but to me that sounds like the same set of skills it takes to do research.